
Int. J. Heat Ma~ Tratufer, Vol. 33, No. 6, pp. 1073--1080. 1990 0017--9310/90 $3.00+0.00 
Ih'inted in Great Britain ~ 1990 Pergamon Press pie 

Effect of rotation on the stability of a doubly 
diffusive fluid layer in a porous medium 

PRABHAMANI R. PATIL, C. P. PARVATHYt and 
K. S. VENKATAKRISHNAN 

Department of Mathematics, Madras Institute of Technology Campus, Anna University, 
Madras 600044, India 

(Received 8 July 1985 and in final form 2 March 1988) 

A~tract--The convective stability of a doubly diffusive fluid saturating a rotating porous medium is 
considered. It is observed that (i) a rotating layer can be destabilized by a bottom-heavy arrangement ; (ii) 
in general, rotation stabilizes the system though under certain conditions it destabilizes the system, (iii) 
rotation has little effect on the stability of the fluid layer under certain conditions, (iv) under some 

conditions three Rayleigh numbers are required to specify linear stability criteria. 

INTRODUCTION 

EFFECTS of rotation on doubly diffusive fluid systems 
find application in various branches of modern science 
like biochemistry, oceanography, stellar convection, 
etc. Pearlstein [1] has given a brief survey of  important 
findings of various workers in these fields. It is 
observed that rotation in general enhances the con- 
vective stability of a doubly diffusive fluid, but for 
certain Darcy-Taylor numbers, Darcy-Prandtl num- 
bers and Darcy-Sehmidt numbers it destabilizes such 
a fluid. Another branch of  science in which rotation 
plays an important role is geophysics. It is known that 
the earth's crust consists era  mixture ofdifferent types 
of fluids like oil, water, gases, etc. the temperature of  
which increases as one goes deep inside. Also, constant 
angular velocity Of the earth about its geographical 
axis gives rise to Coriolis force. Hence any attempt to 
study convective currents in geothermal systems will 
lead to the problem of finding the effect of  rotation 
on the stability of  a muiticomponent fluid the com- 
ponents of  which can diffuse relative to one another. 
Since diffusivity of  mass is less than diffusivity of 
heat under certain conditions, oscillatory convective 
motions may set in. As the earth's crust is essentially 
a porous medium, its porosity may also affect the 
stability of  the system. Stability of  a non-rotating 
doubly diffusive fluid saturating a porous medium has 
been studied by Nield [2], Rudraiah et aL [3], Taunton 
et al. [4], Wankat and Sehowalter [5], Rudraiah and 
Prabhamani [6], Patil and Rudraiah [7], and Patil and 
Vaidyanathan [8]. Peadstein [1] has given a detailed 
analysis for a rotating doubly diffusive Newtonian 
fluid layer. 

The aim of this paper is to study the effect of  
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rotation on the convective stability of  a doubly diffus- 
ive fluid saturating a porous medium. It has been 
assumed that isotropy of  the medium is not disrupted 
due to rotation. 

MATHEMATICAL FORMULATION 

Consider a quiescent layer of a Boussinesq doubly 
diffusive fluid layer saturating a porous medium 
extending to infinit)/in the x'- and y'-directions and 
bounded by free horizontal boundaries z" = 0 and L 
which are maintained at temperatures To and TL, 
respectively. Let the system be rotating with an angu- 
lar velocity I I  about the z'-axis. The concentration of  
the diffusing component is held at Co and CL at z' = 0 
and L, respectively. 

The governing equations are 

V ' q = O  (1) 

l [Oq +qlq I + 2(f~ x q ) l =  -- V/~ - #  - ~ . . .  

(2) 

(3) 
dT 
at' + M q . V T =  x V 2 T  

dC 
~b ~7 +q"  V C  = DV2C. (4) 

Equation (2) is the well-known Darey-Oberbeck- 
Boussinesq (DOB) equation [9] modified for a rotat- 
ing system. It is assumed that rotation does not disrupt 
the isotropy of  the medium. The Darcy model is valid 
for k / L  2 < l0 -3 [10]. Equation (4) is that of Pou- 
likakos [l 1] and Gray [12]. The equation of state is 
taken in the form 

p = ~[1 -~,T(T- t )+s~(C--C) ]  

where s = 1 (-- 1) if the partial molar density of the 
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NOMENCLATURE 

a horizontal wave number, (a~+a~)t/2 
a~ wave number in the x-direction 
ay wave number in the y-direction 
a~ critical wave number 
cp heat capacity 
C solute concentration 
Cb basic state solute concentration 
Co solute concentration at z" = 0 
CL solute concentration at z' = L 
C mean of C0 and Ct, (Co + CD/2 
C perturbation in solute concentration 
D effective diffusivity 
g acceleration due to gravity, (0, 0, - g )  
f, f,/~ unit vectors along the x'-, y'-, z'- 

directions 
k permeability of the medium 
L thickness of the porous layer 
M (~cp)d(/3cp)m 
p pressure 
Pb basic state pressure 

p/~-- 1/21(fl/~) x rl ~ 
Pb Pb/ff-- 1/21([1/~) x r[ = 
Pr Prandtl.number, v/x 
p' perturbation in p 
q seepage velocity vector 
qb basic state seepage velocity, (0, 0, 0) 
q' perturbation in seepage velocity, (u', v', w') 
r position vector 
Rt=.t critical thermal Rayleigh number 
R t thermal Rayleigh number, 

• ~(To-  r~)Lkgp/,¢t~ 
R~ salinity Rayleigh number, 

==(CL-- Co) Lkg~/D/z 
s constant which takes the values 1 or - 1 
S dimensionless concentration, 

C'O/(C~- Co) 
Sc Sehmidt number, v/D 
t dimensionless time, Odp/#k)t" 
t" time 
T temperature 
Ta Darcy-Taylor number, (2OJc/Ov) 2 

Tb basic state temperature 
To temperature at z' = 0 
TL temperature at z' = L 

mean of To and TL,, (To+ TD/2 
T' perturbation in temperature 
W dimensionless velocity in the z'-direction, 

(~k/pt~L)w" 
x', y', z" Cartesian coordinates 
x, y, z dimensionless coordinates, x'/L, y'/ L, 

z'/L. 

Greek symbols 
(n2n~+a2) i/5 

a= coefficient of  solute mass expansion 
=r coefficient of  volume expansion 

dimensionless vorticity in the z'-direction, 
(~k/M,K' 

( '  z'-component of  vorticity 
0 dimensionless temperature, T ' / (To-  TD 
r thermal diffusivity, 2m/(pCp)m 
2~ thermal conductivity, ~2r + (l - ~b)2, 
A i Darcy-Prandtl number, Pr (L2t~/k) 
A2 Darcy-Schmidt number, Sc (L2~Z/k) 
tt coefficient of  viscosity 
v kinematic viscosity,/~//~ 
p density of  the doubly diffusive fluid 
Pb basic state density 
/~ density of  the fluid at T ffi ~/', C ffi t~ 
p" perturbation in density 

porosity 
f l  angular velocity vector, (0, 0, f~). 

Other symbols 
V (Oldx')f+ (Ol(gy')]+ (0/Oz')~ 
V 2 a21Ox,2+a2/ay,~+O=laz ,2 
v~ ~'/ax'2+O2/Oy'2. 

Subscripts 
f fluid 
m solid-fluid mixture 
s solid. 

diffusing component is greater (less) than that of the 
solvent. 

Consider the basic state in which 

qffi=qb ffi(O,O,O) ) 

=Pb, T f T b ,  CffiCb, p f P b j '  (5) 

d 0 d 0 
Ox'---; ffi 07  = dr'-"; = O, Oz---; ~ 0 

where 

0.~b --Pb ] 
Oz ' - 7  = ~ g = - -g [ l - -a r (Tb- -  ~r ' )+s~(Cb--~)]  

(~Tb = T L -  To ~Cb = CL-Co  
Oz' L ' Oz' L 

(6) 

On the basic state given by equations (5) impose a 



Effect of rotation on the stability of a doubly diffusive fluid layer in a porous medium 1075 

small perturbation 

q = q', ~ = ~b(z') +p',  r = rt,(z') + r ' l  

.. C = Cb(Z')+C p ---- p.(z')+p" ~ (7) 

where primed quantities denote the perturbations. 
Linearized dimensionless equations for the per- 
turbations are 

N - S = - W (9) 

~-2 VlS- .. 

(10)  

[o] 
~ + 1  ( =  ra,/2ez.aW (11) 

Boundary conditions imposed at perfectly conducting 
permeable, stress free boundaries at z = 0 and 1 are 

W =  = 0 = S =  0. (12) 

Following Chandrasekhar [13] the perturbations are 
assumed to be 

[w, ~, 0, s] = [Wo(Z), (o(Z), Oo(z), So(z)] 

xexp (ia.,x+iayy+at). (13) 

Substituting equation (13) in equations (8)-(11) 
one obtains 

(d' _<,A1 
t<':L J/0o a AI d = M W  o (14) 

~r- So = - W0 (15) 
A., J 

- ( a + l )  - a '  Wo = Tali' 

- a ' ( ~ ,  S o - - ~ , O o ) . . .  (16) 

(o+  1)(o = Ta'/2 d~z ° • (17) 

The corresponding boundary conditions are 

d ~ o = 0 0 = S o = 0  at z = 0 , 1 .  (18) Wo -- --dT 

Equations (14)-(17) could be reduced to the following 

equation in Wo: 

(e_°Al F (d _°Al 
d/o_ w__ --(0"+1) 2 O-- A2 J L  A, .] 

_°A 3 
x a Aj J dz = 

(£_aAI 
× kd=L_ } |  Wo+U+ ,).. M", 

o -  A~ / Ai  

[ 
x o ~ _lW°' (19) 

That all even derivatives of W o vanish at z = 0 and 1 
can be verified from equations (14) to (17) and bound- 
ary conditions (18), which are satisfied by 

Wo(-) = IV. sin nnz. (20) 

Substitution of equation (20) in equation (19) leads 
to 

[~2(0"+ I) 2 +n2/r 2 Ta][a 2 + o'A2][ct 2 + a A  i] 

- a 2 ( a +  l)[sRc(~ 2 +aAI )  + MRt(ct 2 +aA,) ]  = 0 . . .  

(21) 

Equation (21) is a fourth-degree equation in a which 
can be rearranged as 

o4+B,a3+Cta2+D,o+E, = 0 (22) 

where 

B, = \A, + +2 

~X 4 

+ ~2n2 Ta_a  2 \A2  + A, /_] 

A-~2~d ( 1  + 1 )  a 2 ~  
D, = +~2 _ A_~2(sRc+MRt  ) 

- ~ \ ~  --XT/ 
~4 n2n 2 Ta 2 . ~ .(sR-+MRtla2 

E, = ~ +  A ~  -- A,Az " (23) 
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For the marginal state of  instability via stationary 
convection (when the principle of  exchange of sta- 
bilities is valid), ~r = 0 which gives, from E, = 0, the 
following condition on R~ and Rt: 

~4+lt2n2 Ta ~2-(sP~ + MRt)a2 = O. 

For the lowest mode n = 1 

+ n 2 Ta (n2 +a'~) (24) MRt = - sP~  4 a2 a2 

The critical wave number and thermal Rayleigh num- 
ber are given by 

a~ = 7r'~/(l + To) (25) 

MRt¢,it = - s R . + n 2 [ 1  +~/(1 + Ta)] ~. (26) 

Note that R,~at is a linear function of P~ and is inde- 
pendent o f A .  A~ for a given Ta. 

For a non-rotating system (Ta -- O) 

a¢ = n, MRt~rlt = - s P ~ + 4 n  2. 

From the theory of algebraic equations, it can be 
verified that for Et < 0, instabilities will grow in the 
system. The marginal state of  instability via oscillatory 
convection (i.e. overstability) will manifest itself only 
if ~ is completely imaginary, say a = ico. This leads to 

(m~-C,cox + E ~ ) - i c o ( B t o f l - D , )  = O. 

Equating real and imaginary parts to zero, the 
restraint on Ro Rt is given by 

B,C,  D t - B ~ E , - D ~  = O. 

Correspondingly, for B , C , D , - B 2 ~ E , - D  2 < 0 oscil- 
latory disturbances will grow in the system. Similar 
observations have been made by Taunton et al. [4] for 
a non-rotating system. 

For the lowest mode n = 1 

~ + o ' A ,  ~ ( o ' +  l)(0t~ + ~rA,) 
MRt = -sR~ ~,2+eA 2 + a 2 

x ~ Ta (~,2+aA,) 

+ a2(~r+ 1) 

Thus Rt is a function of P~, a, Ta, A, and A2. Setting 
tr = ico and splitting into real and imaginary parts one 
obtains 

. ['0'~+co'AtA2 -] ~,(-co2A,~" 

= J +  , , '  

~r ~ Ta (~t2+co'A,) 
a2(l +co2 ) l- ico~2M * (27) + 

where 

Since Rt must be real, either co = 0 which leads to 
steady neutral stability or M* = 0. 

OSCILLATORY NEUTRAL STABILITY 

In  this case co # 0, hence M *  = 0, i.e. co must satisfy 

6co'+#co2+~ = 0 (28) 

where 

¢5 = A2'(~t2+A,) (29) 

f l =  (~2+A,)(~ '+A,Z)+A[~2 T a ( ~ - - l )  

-a2sRc(A, - A 2 )  

~ - - - - e4 (e2+Ai )+~  Tae  ~ - ~  

-a2s l~ (A ,  -A2) .  

Equation (28) is a quadratic equation in co~ which can 
have more than one positive root for fixed 'a ' ,  Pc, Ta, 
A, and A2, when multiple oscillatory neutral solutions 
can exist. For the non-rotating system (Ta = 0) the 
frequency is given by 

co2 = a2sR~(A,-A2)  ~,4 
(~2+AI)A,~ A, ~ (30) 

and for the rotating singly diffusive system (At = A2), 
the frequency is given by 

co2 = - 1 .  (31) ~2+A~ 

Thus oscillatory instabilities are possible both in the 
non-rotating doubly diffusive system (Ta = 0) and in 
the rotating singly diffusive system (At = A2) pro- 
vided co2 > 0 since frequency co must be real. 

To determine the critical thermal Rayleigh number, 
Rtc,t, the following procedure is adopted. 

(i) One first checks whq~her equation (28) gives 
positive values for to2. If  not, oscillatory instability is 
not possible and Rt~n, is given by equation (26) and ac 
by equation (25). 

(ii) Ifequation (28) gives positive values for co2 then 
the minimum over 'a '  of equation (27) with co2 given 
by equation (28) is compared with Rt,,t given by equa- 
tion (26) and the smaller value is R~,, and the cor- 
responding critical wave number is ac. 

N U M E R I C A L  RESULTS A N D  D ISCUSSIONS 

Convective stability of  a doubly diffusive fluid satu- 
rating a rotating porous medium has been studied 
using linear stability analysis. DOB equations modi- 
fied for a rotating system have been used to describe 
the flow of fluid through a porous medium. It is 
assumed that the isotropy of the medium is not dis- 
rupted by rotation. Numerical computations have 
been carried out for different values of A,, A2, Ta and 
sR¢. Throughout the analysis M = 1 is assumed. The 
results are given for different values of  sR~ instead 
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of considering s = 1, - 1 separately, because sR¢ > 0 
implies either heavier solute is added at the top or 
lighter solute at the bottom and sP~ < 0 means heavier 
solute is introduced at the bottom or the lighter one ,.~ 
at the t o p . . ~  o 

The critical thermal Rayleigh number obtained for 
Ai = 4 x  10 3, A2 = 4 x  10 5 are shown in Fig. 1 and .~ 
Table 1. From Fig. 1, one may observe that the effect 
of rotation is to stabilize the fluid against convection. 
Also, the shape of  the Rteri t"-sR ¢ plots is virtually .~ 
unaffected by rotation. In the region of steady onset, 
where sR~ is positive for the data considered, the lin- , , ~  
earity is retained exactly according to equation (26). .- 
In the region of oscillatory onset, the deviations from 
linearity are very slight. The solute Rayleigh number ~ It 
at which the mode of  instability changes also is affec- = 
ted very little, a~ is independent of sR~ in the region -~ 
of stationary onset, while it may be seen from Table ~= II 
1 that a¢ varies slowly with sR~ for oscillatory onset. ~ ,~ 
The last column in Table 1 indicates the mode of .~ 
convection that sets in at the onset of instability for ~ ~ o 
different values of  sR~. It is to be noted that oscil- ~ 
lations are possible only for sR¢ < 0. Figure 1 shows ~ = 
also that rotation inhibits both steady and oscillatory -~= ~, ~ 
convection to very nearly the same extent. Results ~ 
obtained for smaller values of A ~, A2, where the ratio ~ 
of A~ to A~ is considerably smaller, are shown in Fig. ~ -= 
2. The difference in the R~¢,t-sR¢ plot for A, = 1000, ~ _ °° 
A~ = 1500 can be noted from Fig. 2. The variation ~-~ 
with Ta of the solute Rayleigh number, at which, the .~ 
mode of instability changes is more apparent in this ~.~ 
case. 

For A~ = 50, A2 = 5000, Ta = 100 it is found that ~ ~" 
the convection sets in through the oscillatory mode o= 
for all negative sR¢. The mode changes for sR~ ~- 593 ~ 
which are noticed from numerical results are shown .~ .~ 
in Fig. 3. It is observed from Fig. 3 that for a bottom .= ~ = 
heavy arrangement (s = 1, R¢ < 0 or s = - 1, Re > 0) "~ 
an increase in solute concentration causes a decrease ~ ~ 
in Rteri t for a certain range of  sR¢. A further increase ~ 
in the solute concentration causes an increase in Rtcri t. .~ 

In other words, the R,~n~-sR¢ plot is found to have a ~ .= 
minimum. When sR¢ --, - oo, it is seen from numerical ~ 
calculations that Rterit-'~ oO through the oscillatory =~ 
mode (shown as inset) and when sR¢ tends to infinity 
via positive values Rtcri t - -  o~ through the stationary ~ ~ --a. " ~  O 

mode. "~-~ 
Under certain conditions it is observed that rotation _ 8. 

has a destabilizing effect on the system while a further E "~ 
increase in Ta stabilizes the system. Typical graphs 
are shown in Fig. 4 for A, = 2, A~ = 5 for different -~ 
values ofsR¢. The convection sets in through the oscil- '= . . -  

latory mode only for all Ta for the data under con- 
sideration. It can be seen from Fig. 4"that, when sR~ 
increases numerically (with sR¢ < 0) Rt¢,~ increases. 
Also numerical results show that Rteri t ~ at) through 
the oscillatory mode when sR¢ ~ -  oo and Rtcri t---, > 

- o ~  via the stationary mode when sR~ approaches .z 
infinity through positive values (not shown in Fig. 4). "~ 

Though the general effect of  rotation is to stabilize t~ 

f 

~O 

~ ,ff ~ ,el e.: oq t.-.: 
I'~. I~. ¢'q ¢xl t-q ¢~ t 'q 

I 

~ I L  - - - -  

I I I 

1$:¢b-¢ 
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FIG. 1. Variation of R~t with sP~ for several Darcy-Taylor 
numbers. 

the system, it is observed that for certain data rotation 
has no significant effect. This is clear from Table 2. 

The numerical computations show that for certain 
values of A ~, A2, Ta and sR~ the critical wave number 
a¢ undergoes a sudden jump as the convection pattern 
changes from the stationary to the oscillatory mode 
(in Table 3 (S) and (O) indicate the modes of  

12000 

As "1000 
A z - 1500 

- - - - - -  Stationary convection 
0sciU.otory convecthm 

 .ooo 

0 

\ \ 

A t - 5 0 ,  A z - 5 0 0 0  , To,  100 - ] 6 2 0  

/I 
i ,~" / il 
"1 ~' '° / iI 

i i l I II = 
-?=10" -3=t0 ~' / II 

/ II / 
~ 490 

-3 x 104 -104  ~)93 

sR, 
FIG. 3. Rt,,t-sR¢ plot having a minimum. Destabilization of  

a bottom heavy arrangement. 

convection). Such a behaviour was observed by 
Chandrasekhar [13] for the convective stability of 
a single component rotating Newtonian fluid layer in 
the presence of a magnetic field. 

The existence of  two positive frequencies which cor- 
respond to two oscillatory neutral solutions is shown 
in Figs. 5(a) and (b) for A, = 50, A: = 5000. It can 
be seen from these figures that the oscillatory neutral 
stability curves are closed, but the region is connected 
in the topological sense and hence only one Rt¢,, is 
necessary to express the stability criteria. Figure 6 
shows closed disconnected neutral curves when two 
oscillatory modes exist for A, = 5000, A2--50,  
Ta = 100, sRc = 600. In this case AI > A2. As can be 
seen from the figure, three critical thermal Rayleigh 
numbers are necessary to specify the regions of stab- 
ility. For R, < - 1 2 3  372, the system is stable. For 
-123372 < R, < -283,  instability sets in through 

N 

- ~ ~  X% \ 440 

",, 3 , o  

%*\N, % - 4 0 0 0  ~'NNN%% N 

-eooo I I I I ""I 
-8000 -4000 0 4000 8000 

FZG. 2. Rt,,~-sl~ plot for several Darcy-Taylor numbers. 

540 A ~  

260 I I I 
10 200 500  

To 

FIG. 4. Rt¢.t-Ta plot for the oscillatory, mode having a 
minimum. Rotation destabilizing for certain data. 
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Table 2. Values of R~, for various 
Darcy-Taylor numbers. Rt~it is affected 
very little by rotation for At = 5, 
A., = 10 and a solute Rayleigh number 

of - l0 s 

Ta Rtmt 

10 25 252 160.55 
100 25 252 160.61 
500 25 252 160.89 

1000 25252 161.23 

the oscillatory mode. For  - 2 8 3  < Rt < 605, it is 
found that the system again becomes stable and for 
R t > 605,  instability sets in through the stationary 
mode. (In drawing the figure for the oscillatory mode, 
the values of  R t have been scaled down to accom- 
modate the oscillatory and stationary curves in the 
same figure.) In conclusion, the results of  the above 
linear analysis are : 

(1) rotation, in general, inhibits the onset of the 
convective motion, though under certain conditions 
it destabilizes the system (Fig. 4) ; 

(2) a rotating layer can get destabilized for a bottom 
heavy arrangement (Fig. 3) ; 

1100 r- 
I ~ A ,  =~000,  A ~ ' ~ O  

I ~ ~. . soo , ro , loo. 

- 1 0 0  

- ~ 0  

-1100 

I 
4 El 

.,22>o 

A 8 

I I I 
12 16 20 

0 

FIG. 6. Closed disconnected neutral stability curves showing 
the existence of three critical Rayleigh numbers. A, B are 

points of equal frequencies. 

Table 3. Critical wave number a, for various Darcy-Taylor numbers Ta  and solute 
Rayleigh numbers P~ 

Ai = 4000, A: = 400000 A1 --- I000, A2 : 1500 

T a  = 500 Ta  : 1000 T a  : 500  T a  = 1000 

$R¢ a c a c a¢ a c 

5000 14.8631 (S) 17.6709 (S) 14.8631 (S) 17.6709 (S) 
4000 14.8631 (S) 17.6709 (S) 14.8631 (S) 50.0102 (0) 
0 14.8631 (S) 17.6709 (S) 14.8631 (S) 47.5519 (0) 

-4000 14.8752 (0) 17.7362 (0) 14.8631 (S) 45.2700 (0) 
-5000 14.8679 (0) 17.7268 (0) 36.8482 (0) 44.8212 (0) 

/ (o) 
'6501 ,~.',~ / /~e 

8 12 18 

A4 ~'50, A ~ ' 5 ~ @ ,  T#-  t00  (b) 

4 ~  

..... I I 
12 18 22 

125o 

o o 

FIGS. 5(a), (b). Closed neutral stability curves showing the existence of two oscillatory modes. A, B are 
points of equal frequencies. 
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(3) critical wave number  is independent of  salinity 
Rayleigh number  for stationary convection and for 
some data the change in the value of  ac is very slight 
for oscillatory convection (Table 1) ; 

(4) for certain data rotat ion has a very little effect 
on the stability of  the system (Table 2) ; 

(5) for certain data  there exist two positive fre- 
quencies which correspond to two oscillatory modes 
(Fig. 5); 

(6) the linear stability criteria have to be expressed 
in terms of  three thermal Rayleigh numbers as 
opposed to a single critical value for A, > A2 (Fig. 6). 

Most of the results observed in this analysis were 
also observed by Pearlstein [1] for a Newtonian fluid 
layer. While preparing the revised version of this paper 
the authors came across the article by Rudraiah et al. 
[14] which is for the Brinkman model. 
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EFFET DE LA ROTATION SUR LA STABILITE D'UNE COUCHE FLUIDE 
DOUBLEMENT DIFFUSIVE DANS UN MILIEU POREUX 

R~,sum6--On consid6re la stabilit6 convective d'un fluide doublement diffusif qui sature un milieu poreux 
tournant. On observe que (i) une couche pout ~tre d~stabilis6: par un arrangement Iourd en partie 
inf~rieure; (ii) en g~n6ral, la rotation stabilise le syst~me et le d~stabilise sous certaines conditions, (iii) la 
rotation a un effet faible sur la stabilit~ de la couche fluide dans certaines conditions; (iv) parfois, il faut 

trois nombre de Rayleigh pour spbzifier le crit~re de stabilit6 lin6aire. 

EINFLUSS EINER ROTATION AUF DIE STABILIT,~T EINER DOPPELT DIFFUSIVEN 
FLUIDSCHICHT IN EINEM POROSEN MEDIUM 

ZusammenfaRuag--Es wird die konvektive Stabilitit eines doppelt diffusiven Fluids in einem rotierenden, 
por6sen Medium betrachtet. Dabei ergibt sich: (i) eine rotierende Schicht kann dadurch destabilisiert 
werden, dab sic einen tiefliegenden Schwerpunkt aufweist; (ii) ganz allgemein stabilisiert eine Drehbewegung 
ein System, dies ist j~och  unter bestimmten Bedingungen nicht der Fall; (iii) die Drehbewegung hat unter 
bestimmten Bedingungen einen geringen Effekt auf die Stabilitat der Fluidschicht; (iv) unter gewissen 

Bedingungen sind 3 Rayleigh-Zahlen als spezifische lineare Stabilitatskriterien erforderlich. 

BHH.qHHE BPAInEHH~ HA YCTOITIqHBOC~b C/IO~ )KI4~KOCTH C ~[BOI~HOITI 
, I I I4~F3HEPI B HOPHCTOPl CPE~[E 

Amo~mm--Hccae~ercs  zonneLmsmm y~rohmBocrb ~ o c r a  c Bao~mog ~a~y~He~, nac~mnu~ 
meg apammouo'Jocl nopncrym cpe~y. Ha~meno, ~rro (i) ycrog,mmocTs npautmom~rocn caon Mozer 
6srrs aapymeaa n ~ c w z r c s a a  c M a c c a n m a M  o c u o m u m e ~ ;  (ii)  n n e a o M  npamem~e m 6 a m ~ r p y e r  
cMcreMy, xorz npu onpeaeaemnax y c a o u n  Moxer aa6moaarscx xeycrog~mocrs orion; (iii) spame- 
m~e Mo~-r O X ~ X b  Hesua~m-~Hoe LmLmme Ha yc-roR~m~c-rs xamcoro cao~; (iv) npx HexoTop~ax 
ye.~ona.qx ~ l  onpe~enem~ L-pwrepxes mind .oR ycTohxnoc~m H e o 6 x o ~  TpH 3uaqeHal ramona 

Panel. 


